Перейти к содержимому

В треугольнике OI2=R2-2Rr, где I — точка пересечения биссектрис (центр вписанной окружности), O — центр описанной окружности, R — радиус описанной окружности, r — радиус вписанной окружности.

Доказательство:

Пусть AM — хорда описанной окружности, проходящая через точку I.

Тогда по теореме о пересекающихся хордах: AI·IM=(R+OI)(R-OI).

Из треугольника AIH по определению синуса: AI=r/sin(α/2).

Из треугольника MAC по теореме синусов и лемме о трезубце: CM=2Rsin(α/2)=IM.

Подставим полученные равенства в AI·IM=(R+OI)(R-OI):

r/sin(α/2)·2Rsin(α/2)=R2-OI2

2Rr=R2-OI2.

Следовательно, OI2=R2-2Rr.

Подписаться
Уведомить о
guest

0 Комментарий
Новые
Старые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
0
Оставьте комментарий! Напишите, что думаете по поводу статьи.x