Симедиана треугольника — чевиана треугольника, симметричная медиане треугольника относительно биссектрисы угла, проведенной из того же угла, что и медиана данного треугольника.
На рисунке CC’, BB’ и AA’ — симедианы треугольника. Они симметричны медианам СD, BF и AE относительно биссектрис углов соответственно.
Основное свойство симедианы треугольника:
Отрезки, на которые симедиана делит противоположную сторону, пропорциональны квадратам прилежащих сторон.
Точка Лемуана — точка пересечения симедиан треугольника.
Свойства:
- Точка Лемуана является центроидом треугольника, образованного её проекциями на стороны исходного треугольника;
- Расстояния от точки Лемуана до сторон треугольника пропорциональны длинам сторон;
- Сумма квадратов расстояний от точки Лемуана до сторон треугольника минимальна.