Содержание

1	Теорема о трёх перпендикулярах	2
2	Угол между скрещивающимися прямыми	3
3	Угол между прямой и плоскостью	4
4	Угол между плоскостями	5
5	Расстояние от точки до прямой	6
6	Расстояние от точки до плоскости	7
7	Расстояние между скрещивающимися прямыми	8
8	Площадь сечения	9
9	Объём	10

1 Теорема о трёх перпендикулярах

- 1. Докажите, что противоположные ребра правильного тетраэдра перпендикулярны.
- **2.**[ЕГЭ 2017] Основанием прямой треугольной призмы $ABCA_1B_1C_1$ является прямоугольный треугольник ABC с прямым углом C. Грань ACC_1A_1 является квадратом. Докажите, что прямые CA_1 и AB_1 перпендикулярны.
- **3.**[ЕГЭ 2017] Основанием прямой треугольной призмы $ABCA_1B_1C_1$ является прямоугольный треугольник ABC с прямым углом C. Диагонали боковых граней AA_1B_1B и BB_1C_1C равны 15 и 9 соответственно. AB=13. Докажите, что треугольник BA_1C_1 прямоугольный.
- **4.**[ЕГЭ 2019] Дана пирамида SABC, в которой $SC=SB=AB=AC=\sqrt{19},\ SA=BC=2\sqrt{6}.$ Докажите, что ребро SA перпендикулярно ребру BC.
- **5.**[ЕГЭ 2021] В основании правильной треугольной призмы $ABCA_1B_1C_1$ лежит треугольник ABC. На прямой AA_1 отмечена точка D так, что A_1 середина AD. На прямой B_1C_1 отмечена точка E так, что C_1 середина B_1E . Докажите, что прямые A_1B_1 и DE перпендикулярны.

2 Угол между скрещивающимися прямыми

Углом между скрещивающимися прямыми a u b называется угол между пересекающимися прямыми a_1 u b_1 , где a_1 параллельна a u b_1 параллельна b.

- **1.** В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямыми AB_1 и BC_1 .
- **2.** В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямыми AD_1 и OC_1 , где O центр грани ABCD.
- **3.** В правильной шестиугольной пирамиде SABCDEF с вершиной S, стороны основания которого равны 1, а боковые ребра равны 2, найдите угол между прямыми SB и CD.
- **4.** Основанием пирамиды SABC является равносторонний треугольник ABC, длина стороны которого равна $4\sqrt{2}$. Боковое ребро SC перпендикулярно плоскости основания и имеет длину 2. Найти угол между скрещивающимися прямыми, одна из которых проходит через точку S и середину ребра BC, а другая проходит через точку C и середину ребра AB.
- ${\bf 5.} [{\rm E}\Gamma \Im\ 2018]$ В правильном тетра
эдреABCDточка H центр грани
 ABC,а точка M середина ребра
 CD.
 - а) Докажите, что прямые AB и CD перпендикулярны.
 - б) Найдите угол между прямыми DH и BM.
- **6.**[ЕГЭ 2018] В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A и B, а на окружности другого основания точки B_1 и C_1 , причем BB_1 образующая цилиндра, а отрезок AC_1 пересекает ось цилиндра.
 - а) Докажите, что угол ABC_1 прямой.
 - б) Найдите угол между прямыми BB_1 и AC_1 , если AB=6, $BB_1=15$, $B_1C_1=8$.

3 Угол между прямой и плоскостью

Углом между прямой и плоскостью называется угол между этой прямой и её ортогональной проекцией на плоскость.

- **1.** В кубе $ABCDA_1B_1C_1D_1$ точка M середина ребра B_1C_1 . Найти угол между прямой AM и плоскостью CD_1M .
- **2.** В правильной четырехугольной пирамиде SABCD, в которой AB=10, SA=8, точка E- середина ребра SB. Найдите угол между прямой CE и плоскостью SBD.
- **3.** Длины всех ребер правильной четырёхугольной пирамиды SABCD с вершиной S равны между собой. Точка M середина бокового ребра пирамиды AS. Найдите угол между прямой BM и плоскостью BDS.
- **4.** В правильном тетраэдре ABCS точка M середина ребра AS. Найдите угол между медианой BM грани ABS и плоскостью BCS.
- 5. В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник ABC с основанием AC. Точка K середина ребра A_1B_1 , а точка M делит ребро AC в отношении AM:MC=1:3. Найдите угол между прямой KM и плоскостью ABC, если $AB=12,\ AC=16$ и $AA_1=6$.

4 Угол между плоскостями

Угол между плоскостями — наименьший из двугранных углов, образованных при пересечении плоскостей. Угловая величина двугранного угла — это величина линейного угла данного двугранного угла. Чтобы найти линейный угол двугранного угла надо из произвольной точки на ребре двугранного угла провести в каждой плоскости по перпендикуляру к этому ребру.

- 1. В кубе $ABCDA_1B_1C_1D_1$ найдите угол между плоскостями BDD_1 и AB_1D_1 .
- **2.** Сторона основания правильной треугольной призмы $ABCA_1B_1C_1$ равна 2, а диагональ боковой грани равна $\sqrt{5}$. Найдите угол между плоскостью A_1BC и плоскостью основания призмы.
- **3.** В кубе $ABCDA_1B_1C_1D_1$ проведена плоскость через середины ребер DD_1 и D_1C_1 и вершину A. Найти угол между этой плоскостью и гранью ABCD.
- **4.**[ЕГЭ 2016] Дана правильная треугольная призма $ABCA_1B_1C_1$, все рёбра которой равны 6. Через точки A, C_1 и середину T ребра A_1B_1 проведена плоскость.
- а) Докажите, что сечение призмы указанной плоскостью является прямоугольным треугольником.
 - б) Найдите угол между плоскостью сечения и плоскостью ABC.
- **5.**[ЕГЭ 2015] В кубе $ABCDA_1B_1C_1D_1$ все рёбра равны 4. На его ребре BB_1 отмечена точка K так, что KB=3. Через точки K и C_1 построена плоскость α , параллельная прямой BD_1 .
 - а) Докажите, что $A_1P:PB_1=2:1$, где P точка пересечения плоскости α с ребром A_1B_1 .
 - б) Найдите угол наклона плоскости α к плоскости грани BB_1C_1C .
- **6.**[ЕГЭ 2017] Дана четырёхугольная пирамида SABCD с прямоугольником ABCD в основании. Сторона AB равна 4, а BC равна $4\sqrt{2}$. Вершина пирамиды S проецируется в точку пересечения диагоналей прямоугольника. Из вершины A и C на ребро SB опущены перпендикуляры AP и CQ.
 - а) Докажите, что точка P является серединой отрезка BQ.
 - б) Найдите угол между плоскостями SBA и SBC, если ребро SD равно 8.
- 7.[ЕГЭ 2019] В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно 7. На рёбрах AB и SC отмечены точки K и M соответственно, причём AK:KB=SM:MC=1:5. Плоскость α содержит прямую KM и параллельна прямой BC.
 - а) Докажите, что плоскость α параллельна прямой SA.
 - б) Найдите угол между плоскостями α и SBC.
- 8. [ЕГЭ 2021] В основании треугольной пирамиды SABC лежит прямоугольный треугольник ABC с прямым углом C. Основание высоты SO этой пирамиды является серединой ребра AB.
 - а) Докажите, что SA = SC.
 - б) Найдите угол между плоскостями SAC и ABC, если AC = 16, AB = 20, SA = 26.
- 9. [ЕГЭ 2021] Дана правильная треугольная пирамида SABC, AB=24, высота SH, проведённая к основанию, равна 14, точка K— середина AS, точка N— середина BC. Плоскость, проходящая через точку K и параллельная основанию пирамиды, пересекает ребра SB и SC в точках Q и P соответственно.
 - а) Докажите, что PQ проходит через середину отрезка SN.
 - б) Найдите угол между плоскостью основания и плоскостью APQ.

5 Расстояние от точки до прямой

Расстоянием от точки до прямой называется длина перпендикуляра, опущенного из данной точки на данную прямую.

- **1.** В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 2, найдите расстояние между прямыми AA_1 и BC_1 .
- **2.** В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, все ребра которой равны 6, найдите расстояние от точки A до прямой C_1D_1 .
- **3.** В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, стороны основания равны 6, а боковые ребра равны 8, найдите расстояние от точки C до прямой D_1E_1
- **4.**[ЕГЭ 2018] В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A и B, а на окружности другого основания точки B_1 и C_1 , причем BB_1 образующая цилиндра, а отрезок AC_1 пересекает ось цилиндра.
 - а) Докажите, что угол ABC_1 прямой.
 - б) Найдите расстояние от точки B до прямой AC_1 , если $AB=21,\,BB_1=12,\,B_1C_1=16.$

6 Расстояние от точки до плоскости

1. Длина ребра куба $ABCDA_1B_1C_1D_1$ равна 5. Найдите расстояние от вершины A до плоскости B_1CD_1 .

- **2.**[ЕГЭ 2015] В правильной четырёхугольной пирамиде SABCD все рёбра равны 5. На рёбрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA = AQ = RC = 2.
 - а) Докажите, что плоскость PQR перпендикулярна ребру SD.
 - б) Найдите расстояние от вершины D до плоскости PQR.
- 3. [ЕГЭ 2016] В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания равна 12, а боковое ребро AA_1 равно $3\sqrt{6}$. На рёбрах AB и B_1C_1 отмечены точки K и L, соответственно, причём AK=2, а $B_1L=4$. Точка M середина ребра A_1C_1 . Плоскость α параллельна ребру AC и содержит точки K и L.
 - а) Докажите, что прямая BM перпендикулярна плоскости α .
 - б) Найдите расстояние от точки C до плоскости α .
- **4.**[ЕГЭ 2020] В правильной треугольной призме $ABCA_1B_1C_1$ сторона AB основания равна 8, а боковое ребро AA_1 равно 7. На ребре CC_1 отмечена точка M, причем CM = 1.
- а) Точки O и O_1 центры окружностей, описанных около треугольников ABC и $A_1B_1C_1$ соответственно. Докажите, что прямая OO_1 содержит точку пересечения медиан треугольника ABM.
 - б) Найдите расстояние от точки A_1 до плоскости ABM.
- **5.**[ЕГЭ 2021] В правильной четырехугольной пирамиде SABCD проведена высота SH.~K- середина ребра SD,~N- середина ребра CD. Плоскость ABK пересекает ребро SC в точке P.
 - а) Докажите, что прямая PK делит отрезок NS пополам.
 - б) Найдите расстояние от точки P до плоскости ABS, если $SH=15,\,CD=16.$

7 Расстояние между скрещивающимися прямыми

Расстоянием между скрещивающимися прямыми называется длина общего перпендикуляра к этим прямым.

- **1.** В правильной четырёхугольной пирамиде SABCD (с вершиной S) сторона основания равна $\sqrt{6}$, а боковое ребро равно 3. Найдите расстояние между прямыми AC и BS.
- **2.** Длина ребра куба $ABCDA_1B_1C_1D_1$ равна 1. Найдите расстояние между диагональю куба AC_1 и скрещивающейся с ней диагональю боковой грани CD_1
- **3.** В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, все рёбра которой равны 1, найдите расстояние между прямыми AD_1 и B_1C .
- **4.**[ЕГЭ 2016] В правильной четырёхугольной пирамиде SABCD сторона AB основания равна $2\sqrt{3}$, а высота SH пирамиды равна 3. Точки M и N середины рёбер CD и AB, соответственно, а NT высота пирамиды NSCD с вершиной N и основанием SCD.
 - а) Докажите, что точка T является серединой SM.
 - б) Найдите расстояние между NT и SC.
- **5.**[ЕГЭ 2017] Основанием прямой треугольной призмы $ABCA_1B_1C_1$ является прямоугольный треугольник ABC с прямым углом C. Грань ACC_1A_1 является квадратом.
 - а) Докажите, что прямые CA_1 и AB_1 перпендикулярны.
 - б) Найдите расстояние между прямыми CA_1 и AB_1 , если AC=4, BC=7.
- **6.**[ЕГЭ 2018] Длина ребра куба $ABCDA_1B_1C_1D_1$ равна 5. Найдите расстояние между прямыми AC и BC_1 .
- **7.**[ЕГЭ 2018] В правильной треугольной призме $ABCA_1B_1C_1$ все рёбра равны 2. Точка M середина ребра AA_1 .
 - а) Докажите, что прямые MB и B_1C перпендикулярны.
 - б) Найдите расстояние между прямыми MB и B_1C .
- **8.**[ЕГЭ 2019] Дана пирамида SABC, в которой $SC = SB = AB = AC = \sqrt{17}$, $SA = BC = 2\sqrt{5}$.
 - а) Докажите, что ребро SA перпендикулярно ребру BC.
 - б) Найдите расстояние между ребрами BC и SA.
- 9. [ЕГЭ 2021] В основании правильной треугольной призмы $ABCA_1B_1C_1$ лежит треугольник ABC. На прямой AA_1 отмечена точка D так, что A_1 середина AD. На прямой B_1C_1 отмечена точка E так, что C_1 середина B_1E . Найдите расстояние между прямыми AB и DE, если AB=4, а $AA_1=1$.

8 Площадь сечения

1.[ЕГЭ 2015] В правильной треугольной пирамиде SABC сторона основания AB равна 24, а боковое ребро SA равно 19. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

- а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
 - б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α .
- **2.**[ЕГЭ 2016] В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания AB=6, а боковое ребро $AA_1=4\sqrt{3}$. На рёбрах AB, A_1D_1 и C_1D_1 отмечены точки M, N и K соответственно, причём $AM=A_1N=C_1K=1$.
- а) Пусть L точка пересечения плоскости MNK с ребром BC. Докажите, что MNKL квадрат.
 - б) Найдите площадь сечения призмы плоскостью MNK.
- **3.**[ЕГЭ 2016] В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=4, BC=3, $AA_1=2$. Точки P и Q— середины рёбер A_1B_1 и CC_1 соответственно. Плоскость APQ пересекает ребро B_1C_1 в точке U.
 - а) Докажите, что $B_1U:UC_1=2:1.$
 - б) Найдите площадь сечения параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью APQ.
- **4.**[ЕГЭ 2018] На ребре AB правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка Q, причём AQ:QB=1:2. Точка P середина ребра AS.
 - а) Докажите, что плоскость DPQ перпендикулярна плоскости основания пирамиды.
 - б) Найдите площадь сечения DPQ, если площадь сечения DSB равна 6.
- **5.**[ЕГЭ 2019] В правильном тетраэдре ABCD точки K и M середины рёбер AB и CD соответственно. Плоскость α содержит прямую KM и параллельна прямой AD.
 - а) Докажите, что сечение тетраэдра плоскостью α квадрат.
 - б) Найдите площадь сечения тетраэдра ABCD плоскостью α , если $AB = 2\sqrt{3}$.
- **6.**[ЕГЭ 2020] Дана правильная треугольная пирамида SABC в которой AB=9, точка M лежит на ребре AB так, что AM=8. Точка K делит сторону SB так, что SK:KB=7:3. Ребро $SA=\sqrt{43}$. Точки M и K принадлежат плоскости α , которая перпендикулярна плоскости ABC.
 - а) Докажите, что точка принадлежит плоскости α .
 - б) Найдите площадь сечения α .

9 Объём

1.[ЕГЭ 2015] В кубе $ABCDA_1B_1C_1D_1$ все рёбра равны 7. На его ребре BB_1 отмечена точка K так, что KB=4. Через точки K и C_1 проведена плоскость α , параллельная прямой BD_1 .

- а) Докажите, что $A_1P:PB_1=1:3$, где P точка пересечения плоскости α с ребром A_1B_1 .
- б) Найдите объём большей из двух частей куба, на которые он делится плоскостью α .
- **2.**[ЕГЭ 2016] В правильной треугольной призме $ABCA_1B_1C_1$ все рёбра равны 8. На рёбрах AA_1 и CC_1 отмечены точки M и N соответственно, причём $AM=3,\ CN=1.$
- а) Докажите, что плоскость MNB_1 разбивает призму на два многогранника, объёмы которых равны.
 - б) Найдите объём тетраэдра $MNBB_1$.
- **3.**[ЕГЭ 2017] Основанием прямой треугольной призмы $ABCA_1B_1C_1$ является прямоугольный треугольник ABC с прямым углом C. Диагонали боковых граней AA_1B_1B и BB_1CC равны 15 и 9 соответственно. AB=13.
 - а) Докажите, что треугольник BA_1C_1 прямоугольный.
 - б) Найти объём пирамиды AA_1C_1B .
- **4.**[ЕГЭ 2017] Ребро куба $ABCDA_1B_1C_1D_1$ равно 6. Точки K, L и M центры граней $ABCD, AA_1D_1D$ и CC_1D_1D соответственно.
 - а) Докажите, что B_1KLM правильная пирамида.
 - б) Найдите объём $B_1 K L M$.
- 5.[ЕГЭ 2018] В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания точка C_1 , причём CC_1 образующая цилиндра, а AC диаметр основания. Известно, что $\angle ACB = 30^\circ$, $AB = \sqrt{2}, CC_1 = 2$.
 - а) Докажите, что угол между прямыми AC_1 и BC равен 45° .
 - б) Найдите объём цилиндра.
- **6.**[ЕГЭ 2020] В правильной шестиугольной пирамиде SABCDEF сторона основания AB=4, а боковое ребро SA=7. Точка M лежит на ребре BC, причем BM=1, точка K лежит на ребре SC, причем SK=4.
 - а) Докажите, что плоскость MKD перпендикулярна плоскости основания пирамиды.
 - б) Найдите объем пирамиды CDKM.
- 7. [ЕГЭ 2021] Дана правильная треугольная пирамида SABC, сторона основания AB=16, высота SH=10, точка K— середина AS. Плоскость, проходящая через точку K и параллельная основанию пирамиды, пересекает ребра SB и SC в точках Q и P соответственно.
 - а) Докажите, что площадь PQB относится к площади BSC как 3:4.
 - б) Найдите объем пирамиды KBQPC.